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Macroclimate warming is often assumed to occur within 
forests despite the potential for tree cover to modify micro-
climates. Here, using paired measurements, we compared 
the temperatures under the canopy versus in the open at 
98 sites across 5 continents. We show that forests function 
as a thermal insulator, cooling the understory when ambi-
ent temperatures are hot and warming the understory when 
ambient temperatures are cold. The understory versus open 
temperature offset is magnified as temperatures become 
more extreme and is of greater magnitude than the warming 
of land temperatures over the past century. Tree canopies may 
thus reduce the severity of warming impacts on forest biodi-
versity and functioning.

The biological impacts of macroclimate warming are increas-
ingly evident across a wide array of ecosystems1–5. However,  
many responses of biological communities and ecosystem pro-
cesses are lagging behind the warming of the macroclimate6–11. 
Such time lags may be the inevitable consequence of slow dis-
persal and demography3,7,8, but may also be due to the buffering 
of localized microclimates by vegetation and topography, such 
that organisms do not necessarily experience the same degree of 
warming measured at weather stations12–18. Biotic and abiotic fea-
tures near the ground create heterogeneous microclimates, mostly 
through effects on radiation, air mixing, evapotranspiration and 
soil properties—all of which can influence biodiversity and eco-
system functioning17,18.

To better predict the biotic consequences of climate change, we 
need to enhance our understanding of how the local temperature 
experienced by living organisms (referred to as the microclimate) 
changes across space and time. Macroclimates outside forests 
(sometimes referred to as free-air temperatures in the literature) 
are characterized by an extensive global network of weather stations 
that are established in the well-mixed air of open areas (for exam-
ple, short grasslands) around 2 m above the soil surface19,20—habitat 
conditions that are not representative of the conditions experi-
enced by the majority of terrestrial species on Earth21,22. The study 
of microclimates is not new, as microclimatological measurements 
began more than a century ago; however, most climate change stud-
ies rely on weather-station data that are specifically designed to 
correct for these microclimatic effects15–20. Therefore, future projec-
tions of climate change that rely solely on macroclimate data ignore 

the potential impact of microclimates on biodiversity and ecosys-
tem functioning1,2,5.

Microclimates are particularly evident in forests, where the large 
majority of species live underneath a canopy of trees that strongly 
influences the local thermal conditions10–13. This is of major con-
cern for global-change science because forests cover one-quarter 
of the Earth’s land surface and harbour two-thirds of all terrestrial 
biodiversity20–23; some studies have already shown that microcli-
matic buffering can mediate the response of forest communities to 
climate change8–11.

Here we report a systematic, global meta-analysis that quanti-
fies the thermal buffering capacity of the Earth’s dominant forested 
ecosystems (tropical to boreal forests) across five continents (Fig. 1). 
Drawing on empirical studies with a strictly paired design (that is, 
comparing microclimate with macroclimate), we quantify the aver-
age temperature offset of forests and how the magnitude of such off-
sets depends on the macroclimatic context (that is, outside forests). 
From a total of 98 sites and 74 studies, we retrieved paired tempera-
ture time series and/or summary statistics (that is, minimum, mean 
or maximum temperatures) for exactly the same time period in (1) 
understory conditions in forests (microclimate) and (2) an adjacent 
open habitat without shade (macroclimate). For all data, tempera-
ture offset values were calculated as the temperatures inside forests 
minus macroclimate temperatures outside forests; negative values 
reflect cooler forest temperatures.

In our global analysis of 714 paired temperature data points, we 
found that tree canopies buffer forest floors against both high and 
low macroclimatic temperatures. The mean and maximum under-
story temperatures were, on average, cooler than macroclimate tem-
peratures by 1.7 ± 0.3°C and 4.1 ± 0.5 °C, respectively (mean ± s.e.m., 
mixed-effects models: both P < 0.001). Conversely, the minimum 
temperatures of the forest understory were 1.1 ± 0.2 °C warmer than 
the macroclimate outside the forest (mixed-effects model: P < 0.001; 
Fig. 1, Supplementary Figs. 1 and 2). Thus, forest understories are 
not only cooler on average than nearby open habitats, but negative 
maximum temperature offsets (cooler in forests) and positive mini-
mum temperature offsets (warmer in forests) also indicate lower 
temperature variation below the forest canopy.

Across the globe, the temperature offset of forests was nega-
tively correlated with the macroclimate temperature outside forests. 
Temperature offsets became more negative (that is, lower tempera-
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tures in forests) as macroclimate temperature increased, and more 
positive (that is, higher temperatures in forests) as macroclimate 
temperature decreased (Fig. 2a, Supplementary Figs. 3 and 4). The 
cooling of mean and maximum temperatures was highest in tropical 
forests (probably partly due to the latitudinal gradient in macrocli-
mate temperatures; Fig. 2a) whereas minimum temperatures were 
highest in boreal forests, relative to the macroclimate temperature 
(Fig. 2b). This means that the latitudinal gradient of forest-floor 
temperatures is less steep than the latitudinal gradient in macrocli-
mate temperature, and that the amplitude of change within a given 
microhabitat does not always equate to the amplitude of macrocli-
mate change11

.

To control for the effects of spatiotemporal changes in macrocli-
mate temperatures (for example, sampling of tropical versus boreal 
forests, low versus high elevations or warm versus cold years) on 
the magnitude of the offset, we computed macroclimate tempera-
ture anomalies relative to the average conditions over the period 
1970–2000 for each of the 98 study sites, and subsequently used 
these anomalies as a predictor variable instead of actual tempera-
tures outside the forest that were reported in the original studies. 
The results are in line with those that use raw temperature values 
rather than anomalies; the cooling effect on maximum and mean 
temperatures—as well as the warming effect on minimum tempera-
tures—is consistent along the gradient of temperature anomalies, 
with very similar slope estimates compared to the models with 
actual macroclimate temperatures (Supplementary Fig. 5).

Taken together, these results suggest that the temperature off-
setting capacity of forests across the globe may translate into lower 
warming in the forest understory compared with warming trends 
using weather-station data from non-forested areas. Forests across 
the globe are thus effectively serving as a thermal insulator compared 
with open areas; such a buffering effect has the potential to reduce 
the severity of climate change impacts on forest ecosystems. The 
temperature offset values that we report here should be compared 
with the thermal sensitivities of species and ecosystem processes to 
better predict ecological responses to increasing temperatures.

We also tested for other factors that might explain some of the 
variation in the magnitude of temperature offsets among studies, 
such as forest composition, tree height, topography, distance to 
the coast or the height of the temperature sensors (for example, 
aboveground or belowground) (Supplementary Figs. 6 and 7,  
Supplementary Table 5). Sensor height was found to impact the 
magnitude of the offset; the buffering in forests was strongest close 
to the ground and the difference in temperatures between for-
ests and open habitats disappeared higher above ground, both for 
minimum and maximum temperatures (Supplementary Fig. 7). 
Contrary to what we expected on the basis of the scientific litera-
ture24, we did not detect an effect of the type of dominant tree spe-
cies (evergreen, deciduous or mixed), topography, distance to the 
coast or forest height on the offset; more targeted studies will be 
needed to provide stronger tests of such factors.

Palaeoecological records show that temperature changes 
of greater magnitude and rate have stronger biological conse-
quences5,25. Here we have shown that microclimate buffering in 
forests has the potential to partly offset the warming experienced 
in the forest understory due to anthropogenic climate change, 
effectively reducing the severity of impacts from heating of the 
atmosphere. As such, closed forest canopies might provide a line of 
defence against the impacts of current and future warming on the 
ecological processes that influence forest ecosystems (for example, 
tree regeneration, demography and community reshuffling, litter 
decomposition, and soil water and nutrient cycling). As offset-
ting was strongest for maximum temperatures, we might expect 
extreme events such as heat waves to be more strongly attenuated 
than gradual temperature changes.

Our results underpin a neglected function of forests—an off-
set of within-forest temperatures that is of greater magnitude than 
the global warming of land and ocean temperatures over the past 
century (~0.85 °C; ref. 4), and greater than the warming of regional 
surface temperatures following deforestation (usually <1 °C; ref. 26). 
Forest canopies serve as thermal insulating layers, probably offset-
ting the impacts of anthropogenic climate change in the understory, 
where a large share of forest biodiversity resides and key ecosystem 
processes take place21,22. It is thus essential to incorporate microcli-
mates into biodiversity and climate science, and forest management 
and policy. As forest loss, degradation and conversion to mono-
culture crops continues27,28, human land use might undermine the 
natural ability of ecosystems to mediate climate warming (a positive 
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Fig. 1 | Forests buffer temperatures under canopies globally. a, 
Distribution of the 98 study sites and their vegetation types. b, Histograms 
display the 714 paired temperature offset values for maximum (Tmax), 
mean (Tmean) and minimum (Tmin) temperatures. Maximum and mean 
temperatures are consistently cooler, and minimum temperatures 
consistently warmer, within forests compared to macroclimate 
temperatures. Temperature offset means ± s.e.m. are based on mixed-
effects models with study as a random-effect term. Full statistical analyses, 
data and code are reported in the Supplementary Information and ref. 
37. Credit: The grey map background in a shows the global distribution 
of forests, from https://www.unep-wcmc.org/resources-and-data/
generalised-original-and-current-forest; the world map is from http://www.
naturalearthdata.com/.
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feedback). Such feedback effects to climate systems may be further 
exacerbated through effects of microclimates on soil CO2 and CH4 
fluxes and subcanopy evapotranspiration rates29.

Advances in studies of microclimate versus macroclimate change 
have thus far been limited by the availability of suitable spatial data 
to model and map small-scale heterogeneity of microclimate condi-
tions10–17,24. Our global analysis shows the importance of forests in 
moderating climate warming, and the next step will be to incorporate 
fine-grained thermal variability into bioclimatic modelling of future 
species demography and distributions14–17. Our findings indicate that 
well-quantified microclimates are key to improving predictions of 
climate change impacts and assisting management decisions. Forest 
managers and policymakers alike can potentially exploit microcli-
mate buffering as a regulating service when developing mitigation 
and adaptation plans to safeguard forest biodiversity and functioning 
as well as human well-being in a future, warmer world.

Methods
Literature search and data extraction. We performed a literature search on ISI 
Web of Science to compile suitable published studies assessing the temperature 

offsetting capacity of forest ecosystems. This search was updated until 15 June 2017 
and performed by each of three authors (P.D.F., F.Z. and J.L.) independently, using 
keywords such as microclimat*, microrefug*, microhabitat*, forest*, temperature* 
and buffer*. The combined number of potentially suitable papers found by these 
three independent searches was 706. We then screened the titles and abstracts to 
find studies that potentially met our requirements for data extraction (see below). 
We considered forest microclimates to represent the suite of climatic conditions 
measured in localized areas near the ground and within the forest understory 
(below tree canopies). Microclimatic conditions include temperature, precipitation, 
wind and humidity; however, the focus here was on the temperature of the air 
layer below tree canopies and the temperature of the topsoil, owing to their 
importance for the responses of forest organisms and ecosystem functioning to 
macroclimate warming. The macroclimate was considered to be the climate in free-
air conditions—representative of a large geographical region without direct canopy 
effects. This definition follows that used by meteorologists who record synoptic or 
macroclimate conditions from standardized weather stations19,20.

Our criteria for study inclusion were the following: studies had to report 
temperature values (time series or summary statistics such as minimum, mean 
or maximum values) according to a strictly paired design that compared the 
microclimate below trees (inside forests) with temperatures recorded from a 
neighbouring reference site outside the forest without any influence of trees. 
Reference sites were a nearby open site equipped with the same type of (shielded) 
temperature loggers, a nearby weather station (provided the distance did not 
conflict with the temperature offset of the canopy, for example, due to significant 
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Fig. 2 | Forest temperature offsets under canopies are negatively related to warming air temperatures and dependent on the biome. a, The magnitude 
of the temperature offset within forests depends on ambient macroclimate temperature; the higher the warming, the higher the temperature offset (Tmax 
and Tmean). For minimum temperatures, positive offsets increase with colder temperatures. b, Study sites were classified into boreal, temperate or tropical, 
based on their latitude. Regression slopes (black lines), 95% confidence intervals (grey shading) and offset means (red lines) are based on mixed-effects 
models with study as a random-effect term. Full statistical analyses, data and code are reported in the Supplementary Information and ref. 37.
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topographic differences) or a logger placed above the upper canopy surface. 
Consistency between the locations of temperature sensors within a pair of 
observations (for example, forest soil temperatures were only compared with 
control soil temperatures) was a requirement. Temperature data presented in tables 
or text were entered directly into our database. Temperature data not available 
directly in the text, raw data or as tables but presented in figures in the original 
papers (42.3% of the total number of offset values) were extracted using the 
digitalization software WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/). 
We did not set any limit on the study duration, that is, we extracted data from 
studies that quantified paired temperature time series during single days up 
to several years. If studies were performed along an edge-to-core transect, we 
considered only the measurements outside the forest farthest away from the edge 
versus the measurement closest to the core of the forest (as far away from the edge 
as possible). We screened the titles and abstracts of all 706 of the above-mentioned 
publications. We also included a formal process of scanning the reference lists 
of relevant papers and extracting more potentially relevant papers from these 
reference lists. In total, we identified 74 studies—published between 1939 and 
2017—that met our above-mentioned requirements for data extraction. The 
majority of the studies were reported in peer-reviewed journal articles, although 
two PhD theses, one book and two institutional reports were also included.

When raw temperature data were available, we computed three summary 
statistics: maximum, mean and minimum temperatures through time. If available, 
we extracted temperatures outside and inside the forest, and then calculated 
the magnitude of temperature offset as the understory temperature minus the 
temperature outside the forest; negative values thus reflect cooler temperatures 
below tree canopies while positive values reflect warmer understory temperatures. 
A third of the studies (34% of offset values) reported only the macroclimate 
versus understory temperature difference (and not the forest and macroclimate 
temperatures separately). In these instances, only the offset value itself was 
directly entered in our database. Replicate forest sites (at least several kilometres 
apart), seasons (meteorological seasons, later aggregated to growing versus non-
growing season) and temperature metrics (maximum, mean, minimum, air or 
soil temperatures) within the same study were entered into different rows of the 
database. Temperature values of longer time series were always aggregated per 
season and/or year.

All authors contributed to the data extraction from the original papers. After 
the first data extraction, however, all entries into the database were thoroughly 
double-checked by four authors (P.D.F., F.Z., F.R.S. and J.L.), working together 
closely to resolve any discrepancies or ambiguities and to ensure a standardized 
protocol was used across all papers. We used the following R packages for data 
management, cleaning and visualization: readxl30, dplyr31, CoordinateCleaner32, 
knitr33, rmarkdown34, ggplot235 and cowplot36, as well as custom R code37.

In total, our final database consisted of 714 paired temperature offset  
data points from 74 independent studies spread across 5 continents. Our full 
database with all variables used in the analyses, as well as all source code, is 
available in ref. 37.

Predictor variables. Apart from the temperature variables, we also extracted the 
following attributes for each offset value and/or study, if they were available in the 
original source article:
•	 Location. Latitude, longitude and elevation (metres above sea level).
•	 Biome. We classified each site into one of the following three biomes on the 

basis of the geographical coordinates: tropical (23.5° S–23.5° N), temperate 
(23.5° N–55° N, or 23.5° S–55° S) or boreal (>55° N or >55° S).

•	 Vegetation type. Forest type was classified into each of three categories on 
the basis of the original source article, or additional sources if necessary (for 
example, other papers from the same study site and/or authors): deciduous 
(if the dominant tree species was deciduous; indicated as 1 in the dataset37), 
evergreen (if the dominant tree species was evergreen; indicated as 2 in the 
dataset) or mixed (indicated as 3 in the dataset).

•	 Study length. The number of days during which temperatures were measured, 
ranging from 1 d to 10 yr.

•	 Forest density. We extracted any of the following variables that are related to 
forest density for each study site, if available: percentage of canopy cover, tree 
basal area (m2 ha−1), tree density (number of trees per ha) and leaf area index. 
Each of the above-described variables was available for a minority of offset val-
ues: 16% for canopy cover, 23% for basal area, 7% for tree density and 8% for 
leaf area index. Owing to the paucity of these data, we do not consider these 
variables further in our analyses, but the raw data are available37.

•	 Forest height. We extracted for each study site, if available (39% of offset 
values), the height of the dominant tree individuals (in metres).

•	 Topographic heterogeneity and distance to the coast. Owing to the known 
effects of topography24 on microclimates, we also extracted topographic het-
erogeneity using raster layers derived from the Global Multi-resolution Ter-
rain Elevation Data 2010 (GMTED2010) dataset at 250 m resolution38. Here 
we focused on two variables that capture topographic heterogeneity within 
a 1 km2 pixel around each pair of measurements (forest and macroclimate 
outside forest): (1) the s.d. of elevation values aggregated per 1 km2 (further 
referred to as elevational variation), and (2) the median of the topographic 

position index values at 1 km resolution. The topographic position index is the 
difference between the elevation of a focal cell and the mean of its eight sur-
rounding cells. Positive and negative values correspond to ridges and valleys, 
respectively, while zero values correspond to flat areas38. We also extracted the 
distance from each pair of measurements (forest and macroclimate outside 
forest) to the nearest coastline.

•	 Season of sampling. Temperature measurements were classified as having 
taken place during the growing season, the non-growing season or whether 
the whole year was sampled (annual). This was aggregated on the basis of 
reported meteorological seasons and/or climate information in the original 
study. The dry and winter season were classified as the non-growing season in 
tropical and temperate biomes, respectively.

•	 Height of the sensor (continuous variable, in metres above or below the soil 
surface). Data were positive for aboveground and negative for belowground 
sensors. Although soil temperatures do not reflect macroclimate temperatures, 
they still allow for a comparison of forests’ thermal buffering capacity on soil 
organisms and processes. The effects of macroclimate temperatures on the 
temperature offset were similar when only considering sensors placed >0 cm 
above the soil surface.

•	 Macroclimate temperature anomalies. We calculated the difference between 
each macroclimate temperature and the long-term average temperature 
for a given site. This was done to test whether the increase in temperature 
offset with warmer macroclimate temperatures was due in part to temporal 
variation in macroclimate, rather than only spatial variation. Macroclimate 
temperatures were thus compared to a common baseline, using 1970–2000 
as a reference period. Using these temperature anomalies, we asked how the 
magnitude of the temperature offset capacity of forests varies along a gradient 
of deviations from long-term temperature averages, analogous to IPCC defini-
tions of climate change4. Location-specific long-term averages (1970–2000) of 
mean annual temperatures were extracted from WorldClim v.2 at 30-arcsec 
spatial resolution (approximately equivalent to 0.86 km2 at the Equator) for 
each study site39.

Data analyses. To report summary statistics of the temperature offset capacity of 
forests globally (Supplementary Table 1), two contrasting approaches were adopted. 
First, the raw mean, median and quantiles were calculated. Then we carried out 
a multilevel-modelling framework using intercept-only linear mixed-effects 
models (LMMs) without fixed predictor variables but using ‘study’ as a random 
intercept term to account for pseudoreplication in some of the 74 selected studies. 
The intercept of intercept-only models represents the average magnitude of the 
temperature offset of forests while accounting for the non-independence among 
replicates from the same study. When fitting our intercept-only LMMs, we used 
the restricted maximum likelihood method in the lmer function from the lme4 
package40 as recommended by Zuur et al.41.

Applying a conventional meta-analytical model sensu stricto with the 
weighting of different observations by means of variance estimates42 was not 
possible here; an estimate of uncertainty (s.e.m., s.d., coefficient of variation or 
confidence intervals) of the offset values was reported for only a small minority 
(13.6%) of offset values included in our database.

Next, we assessed how macroclimate temperatures and macroclimate 
temperature anomalies predicted variation in the temperature offset of 
forests globally. As above, we fitted LMMs with macroclimate temperatures, 
macroclimate temperature anomalies as fixed effects and ‘study’ as a random 
effect using restricted maximum likelihood in the lmer function from the 
lme4 package40. We also performed χ2 tests by comparing the univariate LMM 
including a single predictor with the baseline intercept-only model41. Goodness-
of-fit was determined by calculating the marginal and conditional coefficient of 
determination (R2) as previously reported43 using the r.squaredGLMM function in 
the MuMIn package44.

We also determined how variables such as absolute latitude, biome, elevation, 
vegetation type, distance to the coast, elevational variation and topographic 
position, season and sensor height influenced variation in the offset of forests, and 
how they interacted with macroclimate temperatures. We first ran seven separate 
univariate LMMs, one per predictor variable as a fixed effect. As above, we fitted 
LMMs with a random effect term ‘study’ using restricted maximum likelihood 
in the lmer function from the lme4 package40. To test interactions, we also ran 
LMMs with two predictor variables each: the macroclimate temperature and each 
of the seven other predictors individually; for the sake of simplicity, higher-level 
interactions were not considered (Supplementary Table 6).

Finally, the linearity of the relationship between the temperature offset and 
macroclimate temperatures was tested with general additive mixed models using 
the gamm function in the mgcv package45 and again ‘study’ was added as a random 
term (Supplementary Fig. 4). Our main findings were robust to the decisions to 
(1) analyse understory temperatures as the response variable against macroclimate 
temperature as a fixed effect in LMMs, instead of intercept-only LMMs on the 
basis of offset values (Supplementary Fig. 3), and (2) add random intercepts into 
LMMs, instead of random slopes (Supplementary Table 7). Omitting a few outlier 
values from a single study46 from the analyses also did not affect our conclusions 
(Supplementary Table 8).
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All analyses were performed in R47 v.3.4.4 and all retained papers are in  
the reference list13,46,48–119. All raw data and code can be found in ref. 37. Full  
results of the statistical analyses are reported in Supplementary Tables 1–8.  
We followed best practices for reporting meta-analyses recommended by  
the PRISMA guidelines120 and included a flow diagram summarizing the  
search criteria in Supplementary Fig. 8.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets and code generated and analysed during the current study 
are available in the figshare repository37, with the identifier 10.6084/
m9.figshare.7604849.
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